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Abstract 
The last two decades have seen many efficient algorithms and architectures for the design of low -complexity 

bit-parallel Multiple Constant Multiplications (MCM) operation, which dominates the complexity of Digital 

Signal Processing (DSP) systems. On the other hand, digit-serial architectures offer alternative low -complexity 

designs, since digit-serial operators occupy less area and are independent of the data wordlength. This paper 

introduces the problem of designing a digit-serial MCM operation with minimal area at gate-level and presents 

the exact formalization of the area optimization problem as a 0-1 Integer Linear Programming (ILP) problem 

and introduces high level synthesis algorithms, design architectures, and a computer aided design tool. Results 

and Discussion show the efficiency of the proposed optimization algorithms and of the digit-serial MCM 

architectures in the design of digit serial MCM operations and finite impulse response filters. 

Keywords— 0-1 Integer linear programming (ILP), digit-serial arithmetic, finite impulse response (FIR) filters, 

gate level area optimization, multiple constant multiplications. 

 

I. INTRODUCTION 
Finite impulse response (FIR) filters are of 

great importance in digital signal processing (DSP) 

systems since their characteristics in linear-phase and 

feed-forward implementations make them very useful 

for building stable high-performance filters. The 

direct and transposed-form FIR filter 

implementations are illustrated in Fig. 1(a) and (b), 

respectively. Although both architectures have 

similar complexity in hardware, the transposed form 

is generally preferred because of its higher 

performance and power efficiency [2]. 

The multiplier block of the digital FIR filter 

in its transposed form [Fig. 1(b)], where the 

multiplication of filter coefficients with the filter 

input is realized, has significant impact on the 

complexity and performance of the design because a 

large number of constant multiplications are required. 

This is generally known as the multiple constant 

multiplications (MCM) operation and is also a central 

operation and performance bottleneck in many other 

DSP systems such as fast Fourier transforms, discrete 

cosine transforms (DCTs), and error-correcting 

codes. 

Although area-, delay-, and power-efficient 

multiplier architectures, such as Wallace [3] and 

modified Booth multipliers, have been proposed, the 

full flexibility of a multiplier is not necessary for the 

constant multiplications, since filter coefficients are 

fixed and determined beforehand by the DSP 

algorithms. Hence, the multiplication of filter 

coefficients with the input data is generally 

implemented under a shift-adds architecture, where  

  

 
Fig. 1.FIR filter implementations. (a) Direct form. 

(b) Transposed form with generic multipliers. (c) 

Transposed form with an MCM block. 

 

each constant multiplication is realized using 

addition/subtraction and shift operations in an MCM 

operation [Fig. 1(c)]. 

For the shift-adds implementation of 

constant multiplications, a straightforward method, 

generally known as digit-based recoding, initially 
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defines the constants in binary. Then, for each ―1‖ in 

the binary representation of the constant, according to 

its bit position, it shifts the variable and adds up the 

shifted variables to obtain the result.  

 
Fig. 2.   Shift-adds implementations of 29x and 43x. 

(a) Without partial product sharing and with partial 

product sharing. (b) Exact CSE algorithm [6]. (c) 

Exact GB algorithm [9]. 

 

As a simple example, consider the constant 

multiplications 29x and 43x. Their decompositions in 

binary are listed as follows: 

 

29x = (11101)bin x = x << 4 + x << 3 + x << 2 + x 

43x = (101011)bin x = x << 5 + x << 3 + x << 1 + x 

 

Which requires six addition operations as 

illustrated in Fig. 2(a). 

However, the digit-based recoding 

technique does not exploit the sharing of common 

partial products, which allows great reductions in the 

number of operations and, consequently, in area and 

power dissipation of the MCM design at the gate 

level. Hence, the fundamental optimization problem, 

called the MCM problem, is defined as finding the 

minimum number of addition and subtraction 

operations that implement the constant 

multiplications. Note that, in bit-parallel design of 

constant multiplications, shifts can be realized 

using only wires in hardware without representing 

any area cost. 

The algorithms designed for the MCM 

problem can be categorized in two classes: 

common subexpression elimination (CSE) 

algorithms [4]–[6] and graph-based (GB) techniques 

[7]–[9]. The CSE algorithms initially extract all 

possible subexpressions from the representations of 

the constants when they are defined under binary, 

canonical signed digit (CSD) [4], or minimal signed 

digit (MSD) [5]. Then, they find the ―best‖ 

subexpression, generally the most common, to be 

shared among the constant multiplications. The GB 

methods are not limited to any particular number 

representation and consider a larger number of 

alternative implementations of a constant, yielding 

better solutions than the CSE algorithms, as shown in 

[8] and [9]. 

Returning to our example in Fig. 2, the exact 

CSE algorithm of [6] gives a solution with four 

operations by finding the most common partial 

products 3x = (11)
bin x and 5x = (101)

bin x when  

constants  are  defined under  binary,  as  illustrated  

in Fig. 2(b). On the other hand, the exact GB 

algorithm [9] finds a solution with the minimum 

number of operations by sharing the common partial 

product 7x in both multiplications, as shown in Fig. 

2(c). Note that the partial product 7x = (111)
bin x 

cannot be extracted from the binary representation 

of 43x in the exact CSE algorithm [6]. 

However, all these algorithms assume that 

the input data x is processed in parallel. On the 

other hand, in digit-serial arithmetic, the data words 

are divided into digit sets, consisting of d bits that 

are processed one at a time. Since digit- serial 

operators occupy less area and are independent of 

the data word length, digit-serial architectures offer 

alternative low-complexity designs when compared 

to bit-parallel architectures. However, the shifts 

require the use of D flip-flops, as opposed to the 

bit-parallel MCM design where they are free in 

terms of hardware. Hence, the high-level algorithms 

should take into account the sharing of shift 

operations as well as the sharing of 

addition/subtraction operations in digit-serial MCM 

design. Furthermore, finding the minimum number 

of operations realizing an MCM operation does not 

always yield an MCM design with optimal area at 

the gate level [10]. Hence, the high-level algorithms 

should consider the implementation cost of each 

digit-serial operation at the gate level. 

In this paper, we initially determine the 

gate-level implementation costs of digit-serial 

addition, subtraction and left shift operations used in 

the shift-adds design of digit-serial MCM 

operations. Then, we introduce the exact CSE 

algorithm [11] that formalizes the gate-level area 

optimization problem as a 0–1 integer linear 

programming (ILP) problem when constants are 

defined under a particular number representation. 

We also present a new optimization model that 

reduces the 0–1 ILP problem size significantly and, 

consequently, the runtime of a generic 0–1 ILP 

solver. Since there are still instances which the exact 

CSE algorithm cannot handle, we describe the 

approximate GB algorithm [12] that iteratively finds 

the ―best‖ partial product which leads to the optimal 

area in digit-serial MCM design at the gate level. 

This paper also introduces a computer-aided 

design (CAD) tool which generates the hardware 

descriptions of digit-serial MCM operations and FIR 

filters based on design architecture and implements 

these circuits using a commercial logic synthesis 

tool. The digit-serial constant multiplications can be 

implemented under the shift- adds architecture, and 
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also can be designed using generic digit- serial 

constant multipliers. 

Results on a comprehensive set of 

instances show that the solutions of algorithms 

introduced in this paper lead to significant 

improvements in area of digit-serial MCM designs 

compared to those obtained using the algorithms 

designed for the MCM problem. The digit-serial FIR 

filter designs obtained by CAD tool also indicate that 

the realization of the multiplier block of a digit-serial 

FIR filter under the shift- adds architecture 

significantly reduces the area of digit-serial FIR 

filters with respect to those designed using digit-

serial constant multipliers. Additionally, it is 

observed that the optimal tradeoff between area and 

delay in digit-serial FIR filter designs can be 

explored by changing the digit size d. 

 

II. BACKGROUND 
This section presents the main concepts 

related to the proposed algorithms, introduces the 

problem definitions, and gives an overview on 

previously proposed algorithms. 

 

A. Number Representation 

The binary representation decomposes a 

number in a set of additions of powers of 2. The 

representation of numbers using a signed digit system 

makes use of positive and negative digits, {1, 0, −1}.  

The CSD representation is a signed digit system 

that has a unique representation for each number and 

verifies the following main properties:  

1) two nonzero digits are not adjacent 

2) the number of nonzero digits is minimum. 

Any n digit number in CSD has at most [(n 

+1)/2] nonzero digits and, on average, the number 

of nonzero digits is reduced by 33% when compared 

to binary. The MSD representation [5] is obtained 

by dropping the first property of the CSD 

representation. Thus, a constant may have several 

representations under MSD, including its CSD 

representation, but all with a minimum number of 

nonzero digits.  

Consider the constant 23 defined in six bits. 

Its binary representation 010111 includes four 

nonzero digits. It is represented as 100110  in CSD, 

and both 100110 and 101100  denote 23 in MSD 

using three nonzero digits (where 1  stands for −1). 

 

B. Boolean Satisfiability 

A Boolean function ϕ:  {0, 1}n  → {0, 1} can 

be denoted by a propositional formula. The 

conjunctive normal form (CNF) is a representation 

of a propositional formula consisting of a 

conjunction of propositional clauses where each 

clause is a disjunction of literals and a literal l j   

is either a variable x j   or its complement x j . Note 

that, if a literal of a clause assumes value 1, then 

the clause is satisfied. If all literals of a clause 

assume the value 0, then the clause is unsatisfied. 

The satisfiability (SAT) problem is to find an 

assignment on n variables of the Boolean formula in 

CNF that evaluates the formula to 1, or to prove that 

the formula is equal to the constant 0. 

 
Fig. 3. Combinational circuit and its corresponding 

CNF formula. 

 

A combinational circuit is a directed 

acyclic graph with nodes corresponding to logic 

gates and directed edges corresponding to wires 

connecting the gates. Incoming edges of a node are 

called fanins and outgoing edges are called fanouts. 

The primary inputs of the network are the nodes 

without fanins. The primary outputs are the nodes 

without fanouts. 

The CNF formula of a combinational circuit 

is the conjunction of the CNF formulas of each gate, 

where the CNF formula of each gate denotes the 

valid input–output assignments to the gate. The 

derivation of CNF formulas of basic logic gates 

can be found in [13]. As a simple example, consider 

the combinational circuit and its CNF formula given 

in Fig. 3. In this Boolean formula, the first three 

clauses represent the CNF formula of a two-input 

AND gate, and the last three clauses denote the 

CNF formula of a two-input OR gate. Observe from 

Fig. 3 that the assignment x1   = x3   = x4   = x5   

= 0 and x2 =1 makes the formula ϕ equal to 1, 

indicating a valid assignment. However, the 

assignment x1 = x3 = x4 = 0 and x2 = x5 = 1 

makes the last clause of the formula equal to 0 and, 

consequently, the formula ϕ, indicating a conflict 

between the values of the inputs and output of the 

OR gate. 

 

C. 0-1 ILP 

The 0–1 ILP problem is the minimization or 

the maximization of a linear cost function subject to a 

set of linear constraints and is generally defined as 

follows: 

Minimize w
T
 ・ x                      (1) 

s.t. A ・ x ≥ b, x ∈  {0, 1}
n
.           (2) 

In (1), wj in w is an integer value associated 

with each of n variables x j, 1 ≤ j ≤ n, in the cost 

function, and in (2), A・ x ≥ b denotes the set of m 

linear constraints, where 

 b ∈  Z
m
 and A ∈  Z

m
 × Z

n
. 

A clause l1 + ・ ・ ・ + lk, where k ≤ n, to 

be satisfied in a CNF formula can be interpreted as a 

linear inequality l1+・ ・ ・+lk ≥ 1, where x j is 
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represented by 1−x j, as shown in [14]. These linear 

inequalities are commonly referred to as CNF 

constraints, where ai j ∈  {−1, 0, 1} and bi is equal to 1 

minus the total number of complemented variables in 

its CNF formula. For instance, the set of clauses,    

(x1 + x2), (x2 + x3), and (x1 + x3), has the equivalent 

linear inequalities given as x1 + x2 ≥ 1, −x2 + x3 ≥ 0, 

and −x1 − x3 ≥ −1, respectively. 

 
Fig. 4. Digit-serial operations when d is equal to 2. 

(a) Addition operation. (b) Subtraction operation.   

(c) Left shift by one time. (d) Left shift by two times. 

 

D. Digit – Serial Arithmetic 

In digit-serial arithmetic, data words are 

divided into digits, with a digit size of d bits, which 

are processed in one clock cycle. The special cases of 

the digit-serial computation, called bit-serial and bit-

parallel processing, occur when the digit size d is 

equal to 1 and input data wordlength, respectively. 

The digit-serial computation plays an important role 

when the bit-serial implementations cannot meet 

delay requirements and the bit-parallel designs 

require excessive hardware. Thus, an optimal tradeoff 

between area and delay can be obtained by changing 

the digit size parameter (d). 

The digit-serial addition, subtraction, and 

left shift operations are depicted in Figure 4 when d 

is equal to 2. Notice from Figure 4(a) that in a digit-

serial addition operation, in general, the number of 

required full adders (FAs) is equal to d and the 

number of necessary D flip-flops is always 1. The 

subtraction operation (Figure 4(b)) is implemented 

using 2’s complement, requiring the initialization of 

the D flip-flop with 1 and additional d inverter gates 

with respect to the digit-serial addition operation. In a 

left shift operation (Figure 4(c)-(d)), the number of 

required D flip-flops is equal to the amount of shift. 

The input-output correspondence and the number of 

flip-flops cascaded serially for each input in a digit-

serial left shift operation are given in Eqn. (3) and (4) 

respectively, where i ranges from 0 to d−1 and ls 

denotes the amount of left shift. 

         

ai =>  c(i + ls) mod d              (3) 

































.,

)mod(,

Otherwise
d

ls

dlsdiif
d

ls

FFai

               (4) 

 

As an example on digit-serial realization of 

constant multiplications under the shift-adds 

architecture, Figure 5 illustrates the digit-serial 

implementation of 29x and 43x obtained by the exact 

GB algorithm given in Figure 2(c) when d is 1. The 

network includes 2 digit serial additions, 1 digit-

serial subtraction, and 5 D flip-flops for all the left 

shift operations. Observe from Figure 5 that at each 

clock cycle, one bit of the input data x is applied to  

 
Fig. 5.Digit-serial design of shift-adds 

implementation of 29x and 43x given in Fig. 2(c) 

when d is 1. 

 

the network input and one bit of the constant 

multiplication output is computed. Note that the 

digit-serial design of the MCM operation occupies 

significantly less area when compared to its bit-

parallel design and the area of the design is not 

dependent on the bit-width of the input data. 

However, the latency of the MCM computation is 

increased due to the serial processing. Suppose that x 

is a 16-bit input value. To obtain the actual output of 

29x and 43x in the digit-serial network of Figure 5, 

21 and 22 clock cycles are required respectively1. 

Thus, necessary bits must be appended to the input 

data x, i.e., 0s, if x is an unsigned input or sign bits, 

otherwise. Moreover, in the case of the conversion of 

the outputs obtained in digit-serial to the bitparallel 

format, storage elements and control logic are 

required. 

 

LMCM = 







 

d

Nbw )(                                              (5) 

 

Where N is the bit width of the input 

variable x, bw is the maximum bit width of the 

constants to be implemented, and d is less than N. 

Thus, (5) does not apply to bit-parallel processing 

(when d = N). Note that in a bit-parallel design, the 

latency of the MCM computation is only one clock 

cycle. Returning to our example given in Fig. 5, 

suppose that x is a 16-bit input value. Thus, to obtain 

the actual output of 29x and 43x in the digit-serial 

network of Fig. 5, we need a total of 11 clock cycles. 

As a sign extension, d × LMCM − N bits must be 

padded to the input data x, which are zeros if x is an 

unsigned input, or sign bits otherwise. 

 

III. EXACT CSE ALGORITHM 
The exact CSE algorithm consists of four 

main steps. First, all possible implementations of 
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constants are extracted from the nonzero digits of the 

constants defined under a number representation: 

binary, CSD, or MSD. Then, the implementations of 

constants are represented in terms of a Boolean 

network. Third, the gate-level area optimization 

problem is formalized as a 0–1 ILP problem with a 

cost function to be minimized and a set of constraints 

to be satisfied. Finally, a set of operations that yields 

the minimum area solution is obtained using a 

generic 0–1 ILP solver. These four steps are 

described in detail next. 

 
Fig.6. Possible implementations of 25 under MSD 

representation. 

 

A. Finding the Partial Terms 

In the preprocessing phase, the constants to 

be multiplied by a variable are converted to positive, 

and then made odd by successive divisions by 2. The 

resulting constants are stored without repetition in the 

target set T. Thus, T includes the minimum number of 

necessary constants to be implemented. The part of 

the algorithm where the implementations of the target 

constants and partial terms are found is as follows. 

1)  Take an element from T, ti , find its 

representation(s) under the given number 

representation, and store it(them) in a set called 

S. Form an empty set Oi , associated with ti , that 

will include the inputs and the amount of left 

shifts at the inputs of all addition/subtraction 

operations which generate ti . 

2) For each representation of ti in the set S. 

a) Compute all non symmetric partial term 

pairs that cover the representation of ti. 

b)  In each pair, make each partial term positive 

and odd, and determine its amount of left 

shift. 

c)  Add each pair to the set Oi with the amount 

of left shifts of partial terms. 

d)  Add each partial term to T, if it does not 

represent the input that the constants are 

multiplied with, i.e., denoted by 1, and is not 

in T. 

3) Repeat Step 1 until all elements of T are 

considered. 

Observe that the target set T only includes 

the target constants to be implemented in the 

beginning of the iterative loop, and in later iterations 

it is augmented with the partial terms that are 

required for the implementation of target constants. 

All possible implementations of an element in the 

target set ti are found by decomposing the nonzero 

digits in the representation of, ti, into two partial 

terms. As an example, consider 25 as a target 

constant defined under MSD, which has two 

representations 011001 and 101001. All possible 

implementations of 25 are given in Fig. 6. 

Observe from Fig. 6 that the last 

implementations of 25 on both representations, i.e., 1 

+ 3 << 3, are identical, therefore one of them can be 

eliminated. Also, the duplications of 

implementations, such as 1 << 4 + 9 = 9 + 1 << 4, are 

not listed in Fig. 6. After the partial terms required 

for the implementation of 25 under MSD, i.e., 3, 7, 9, 

17, and 33, are found, they are added to the target set 

T without repetition and their implementations are 

determined in a similar way. 

 

B. Construction of the Boolean Network 

After all possible implementations of target 

constants and partial terms are found, they are 

represented in a network that includes only AND and 

OR gates. Its properties are given as follows. 

1)    The primary input of the network is the input 

variable to be multiplied with the constants. 

2)    An AND gate in the network represents an 

addition/ subtraction operation and has two 

inputs. 

3)    An OR gate in the network represents a target 

constant or a partial term and combines all its 

possible implementations. 

4)  The outputs of the network are the OR gate 

outputs associated with the target constants. 

The Boolean network is constructed as 

follows. 

      1)  Take an element from T, ti. 

      2) For each pair in Oi, generate a two-input 

AND gate. The inputs of the AND gate are 

the elements of the pair, i.e., 1, denoting the 

input that the constants are Multiplied with, 

or the outputs of OR gates representing 

target constants or partial terms in the 

network. 

3)  Generate an OR gate associated with ti, 

where its inputs are the outputs of the AND 

gates determined in Step 2. 

4)  If ti is a target constant, make the output of the 

corresponding OR gate an output of the network. 

5)  Repeat Step 1 until all elements in T are 

considered.  

The network generated for the target 

constant 25 defined under MSD is given in Fig. 7, 

where one-input OR gates for the partial terms 7, 9, 

17, and 33 are omitted and the type of each operation 

is shown inside of each AND gate. 
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Fig.7. Network constructed for the target constant 25 

under MSD. 

 

C.  Formalization of the 0-1 ILP Problem 

We need to include optimization variables 

into the network, so that we can easily formalize the 

gate-level area optimization problem as a 0–1 ILP 

problem. The optimization variables are associated 

with two parameters that have different 

implementation costs at the gate level, i.e., 

addition/subtraction operations and left shifts of 

constants (partial terms and target constants). 

For each AND gate that represents an 

addition/subtraction operation in the network, we 

introduce an optimization variable associated with 

the operation, i.e., opt a ± b, where a and b denote the 

inputs of an operation, and we add this variable to the 

input of the AND gate. The cost value of this type of 

optimization variable in the cost function to be 

minimized is determined as the gate-level 

implementation cost of the digit-serial operation 

computed considering its type (addition or 

subtraction) and the digit size (d), as described in [1]. 

In order to maximize the sharing of left shifts, i.e., 

the D flip-flops at the gate level, for each constant c 

in the network, we initially find the maximum 

amount of left shift mlsc that the constant c has. Then, 

for each constant c with mlsc greater than zero, we 

introduce mlsc optimization variables representing 

left shifts of c from 1 to mlsc, i.e., optc<<1, optc<<2, . . . 

, optc<<mlsc .In the cost function to be minimized, the 

cost value of this type of optimization variable is 

determined as the gate-level cost of one D flip-flop, 

as described in Section II-D. The inclusion of these 

optimization variables into the network can be done 

in two ways. 

 

Model 1: For each AND gate in the network 

representing an addition/subtraction operation, if an 

input signal ins is shifted by ls > 0 times, then we 

include ls additional inputs standing for the 

optimization variables associated with the ls left shift 

of the input signal ins, i.e., optins<<1, optins<<2, . . . , 

optins<<ls . 

 

Model 2: Initially, for each constant c with mlsc 

greater than zero, we generate a chain of mlsc − 1 

AND gates with two inputs, where the inputs of the 

first AND gate of the chain are optc<<1 and optc<<2, 

and the inputs of the i
 th

 AND gate are optc<<i+1 and 

the output of the (i − 1)
th

 (previous) AND gate in the 

chain, where 2 ≤ i ≤ mlsc − 1. Then, for each AND 

gate representing an addition/subtraction operation, if 

an input signal ins is shifted by ls > 0 times, we add a 

single input to the AND gate. This input is optins_1, 

if ls is equal to 1, or otherwise, the output of the (ls − 

1)
th

 AND gate in the chain of AND gates including 

the optimization variables for the mlsins left shift of 

the input signal ins. 

 

 
Fig. 8. (a)    Networks constructed for the target 

constant 25 under MSD after the optimization 

variables are added Under Model 1. 

 

Some simplifications in the network can be 

also achieved. The input variable x denoted by 1 can 

be eliminated from the inputs of the AND gates, 

because its logic value is always 1 (i.e., it is always 

available). Fig. 8(a) and (b) illustrate the networks 

generated for the target constant 25 under MSD after 

the simplifications are done and the optimization 

variables are added under Models 1 and 2, 

respectively. 

 After the optimization variables are added 

into the network, the 0–1 ILP problem is generated. 

The cost function of the 0–1 ILP problem is 

constructed as the linear function of optimization 

variables, where the cost value of each optimization 

variable is determined as described previously. The 
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constraints of the 0–1 ILP problem are obtained by 

finding the CNF formulas of each gate in the network 

and expressing each clause of the CNF formulas as a 

linear inequality, as described in Section II-C. The 

outputs of the network, i.e., the outputs of OR gates 

associated with the target constants, are set to 1, since 

the implementation of target constants is aimed. 

Observe from Fig. 8(a) and (b) that Model 1 

generates a  0-1 ILP problem including slightly less 

number of variables than Model 2 due to the chain of 

AND gates used in Model 2. However, the 0–1 ILP 

problem constructed under Model 2 has significantly 

less number of constraints than that of Model 1 since 

the number of inputs of an AND gate representing an 

addition /subtraction operation is increased only by 1 

during the inclusion of the optimization variables 

denoting the left shift of a constant in Model 2. Note 

that the number of optimization variables under both 

models is the same. 

 

 
Fig. 8. (b)    Networks constructed for the target 

constant 25 under MSD after the optimization 

variables are added Under Model 2. 

 

E.   Finding the Minimum Area Solution 

A generic 0–1 ILP solver will search for the 

minimum value of the cost function on the generated 

0–1 ILP problem by satisfying the constraints that 

represent how target constants and partial terms are 

implemented. The set of operations that yields the 

minimum area solution consists of the 

addition/subtraction operations whose optimization 

variables are set to 1 in the solution obtained by the 

0–1 ILP solver. 

 

IV. APPROXIMATE GB ALGORITHM 
The solution of an exact CSE algorithm 

described in Section III is not the global minimum 

since all possible implementations of a constant are 

found from its representation. Also, the optimization 

of gate-level area problem in digit-serial MCM 

design is an NP-complete problem due to the NP-

completeness of the MCM problem. Thus, naturally, 

there will be always 0–1 ILP problems generated by 

the exact CSE algorithm that current 0–1 ILP solvers 

find difficult to handle. Hence, the GB heuristic 

algorithms, which obtain a good solution using less 

computational resources, are indispensable. 

In our approximate algorithm called 

MINAS-DS[1], as done in algorithms designed for 

the MCM problem given in Definition 1[1], we find 

the fewest number of intermediate constants such that 

all the target and intermediate constants are 

synthesized using a single operation. However, while 

selecting an intermediate constant for the 

implementation of the not yet synthesized target 

constants in each iteration, we favor the one among 

the possible intermediate constants that can be 

synthesized using the least hardware and will enable 

us to implement the not-yet synthesized target 

constants in a smaller area with the available 

constants. After the set of target and intermediate 

constants that realizes the MCM operation is found, 

each constant is synthesized using an A-operation 

that yields the minimum area in the digit-serial MCM 

design. In MINAS-DS, the area of the digit-serial 

MCM operation is determined as the total gate-level 

implementation cost of each digit-serial addition, 

subtraction, and shift operation under the digit size 

parameter d as described in Section II-D.       

V. FIR FILTER DESIGN 

This section is divided in two parts: the first 

part presents the results of high-level algorithms on 

digit-serial MCM blocks design and second part 

presents the digit-serial FIR filter design. 

A. Digit-Serial MCM Design 

The digit-serial realization of multiple 

constant multiplications under the shift-adds 

architecture is illustrated in Fig. 4 digit-serial 

implementation of 29x and 43x obtained by the exact 

GB algorithm given in Fig. 2(c) with digit size equal 

to 1. As can be easily observed, the network includes 

2 digit-serial addition, 1 digit-serial subtractions, and 

5 D flip-flops for all the left shift operations. In this 

network, at each clock cycle, two bits of input data x 

is applied to the network and two bits of the constant 

multiplications output is computed at the output of 

digit-serial addition/ subtraction operation. While 

sharing of addition/ subtraction operation reduces the 

complexity of the digit-serial MCM design (since 

each addition and subtraction operation requires a 

digit-serial operation), the sharing of shift operations 

for a constant multiplication also reduces the number 

of D flip-flops and, consequently, the area of the 

digit-serial MCM design[12][15]. 
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B. Digit-Serial FIR Filter Design 

The realization of Digit-serial FIR filter 

using Multiple Constant Multiplication is illustrated 

in Fig. 1(c) the multiplier block is replaced by 

Multiple Constant Multiplication (MCM) block. 

Initially multiplier block is implemented 

based on CSE and GB algorithms using digit-serial 

addition, subtraction, and shift operations and then 

digit-serial FIR filter is implemented by using 

multiplier block. Hence these architectures requires 

less area, power and delay Compared to bit-parallel 

FIR filter. In practical, there should be a tradeoff 

between area and delay, it is mainly depends on digit 

size d. The digit-serial MCM blocks has been 

implemented with the constant coefficients 29, 43 

with the digit size 1 by using the graph based 

technique through this the digit-serial FIR filter has 

been developed like as shown in Fig. 1(c). It can 

require a delay elements and adders with an MCM 

block. 

 

 

VI. RESULTS AND DISCUSSIONS 
This section presents the results of high-

level algorithms on MCM blocks of FIR filters. 

Fig.9 shows the simulation results of an 

network constructed for the target constant 25 under 

MSD by using CSE algorithm. 

Fig.10 and Fig.11 Shows Simulation results 

of Networks constructed for the target constant 25 

under MSD after the optimization variables are 

added Under Model 1 and Model 2. The Table 1can 

shows the comparisons between of Networks 

constructed for the target constant 25 under MSD 

after the optimization variables are added Under 

Model 1 and Model 2. These comparisons can yields 

the area required to construct an digit-serial MCM. 

Depending on the parameter in the Table 1 the area 

required to construct an digit-serial MCM operation 

in Model 2 is less than that of the Model 1. Fig. 12 

shows the comparison graph between the Model 1 

and Model 2. 

Fig.13 shows the simulation results of Digit-

serial design of shift-adds implementation of 29x and 

43x  under Graph Based algorithm and Fig.14 shows 

the simulation results of an FIR filter with and digit-

serial MCM blocks. 

 

 

 
 

Fig. 9 Simulation results of network constructed for 

the target constant 25 under MSD. 

 

 
 

Fig. 10. Simulation results of Networks constructed 

for the target constant 25 under MSD after the 

optimization variables are added Under Model 1. 

 

 

 

 
 

Fig. 11.Simulation results of Networks constructed 

for the target constant 25 under MSD after the 

optimization variables are added Under Model 2. 

 

TABLE 1 

Comparison of Model1 and Model 2 

 

Components/ Model Model 1 Model 2 

Adders 7 7 

Subtractors 4 4 

Comparators 25 6 
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Slices 203 93 

Number of 4 input LUTs 356 164 

 

 

 
 

Fig. 12. Graph for comparison between the Model 1 

and Model 2  

 

 
 

Fig. 13. Simulation results of Digit-serial design of 

shift-adds implementation of 29x and 43x   

 

 
 

Fig.14. Simulation results of Digit-serial FIR filter  

 

 

 

VII. CONCLUSION 
In this paper, we introduced the 0–1 ILP 

formalization for designing digit-serial MCM 

operation with optimal area at the gate level by 

considering the implementation costs of digit-serial 

addition, subtraction, and shift operations. Although 

the search space of the exact algorithm is restricted 

by the number representation, the given 0-1 ILP 

formalization can be applied in algorithms that are 

not limited to any particular number representation. 

Since there  are  still  instances  with  which  the  

exact  CSE  algorithm cannot cope, we also 

proposed an approximate GB algorithm that finds 

the  best  partial products in  each  iteration which 

yield the optimal gate-level area in digit-serial MCM 

design. This paper also introduced the design 

architectures for the digit-serial MCM operation 

and a CAD tool for the realization of digit-serial 

MCM operations and FIR filters. 

The results indicate that the complexity of 

digit-serial MCM designs can be further reduced 

using the high-level optimization algorithms 

proposed in this paper. It was shown that the 

realization of digit-serial FIR filters under the shift-

adds architecture yields significant area reduction 

when compared to the filter designs whose 

multiplier blocks are implemented using digit-serial 

constant multipliers. It is observed that a designer 

can find the circuit that fits best in an application 

by changing the digit size. 
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