
Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 80 | P a g e

Optimizing The Gate Level Area In Digit Serial FIR Filter Design

With An MCM Blocks

Bayikati Yagneswar
1
, G. Naresh

2

1
P.G. Student Scholar, M. Tech (VLSI) Department of E.C.E Sree Vidyanikethan Engineering College, Tirupati,

A.P
2
M. Tech Assistant Professor Department of E.C.E Sree Vidyanikethan Engineering College, Tirupati, A.P

Abstract
The last two decades have seen many efficient algorithms and architectures for the design of low -complexity

bit-parallel Multiple Constant Multiplications (MCM) operation, which dominates the complexity of Digital

Signal Processing (DSP) systems. On the other hand, digit-serial architectures offer alternative low -complexity

designs, since digit-serial operators occupy less area and are independent of the data wordlength. This paper

introduces the problem of designing a digit-serial MCM operation with minimal area at gate-level and presents

the exact formalization of the area optimization problem as a 0-1 Integer Linear Programming (ILP) problem

and introduces high level synthesis algorithms, design architectures, and a computer aided design tool. Results

and Discussion show the efficiency of the proposed optimization algorithms and of the digit-serial MCM

architectures in the design of digit serial MCM operations and finite impulse response filters.

Keywords— 0-1 Integer linear programming (ILP), digit-serial arithmetic, finite impulse response (FIR) filters,

gate level area optimization, multiple constant multiplications.

I. INTRODUCTION
Finite impulse response (FIR) filters are of

great importance in digital signal processing (DSP)

systems since their characteristics in linear-phase and

feed-forward implementations make them very useful

for building stable high-performance filters. The

direct and transposed-form FIR filter

implementations are illustrated in Fig. 1(a) and (b),

respectively. Although both architectures have

similar complexity in hardware, the transposed form

is generally preferred because of its higher

performance and power efficiency [2].

The multiplier block of the digital FIR filter

in its transposed form [Fig. 1(b)], where the

multiplication of filter coefficients with the filter

input is realized, has significant impact on the

complexity and performance of the design because a

large number of constant multiplications are required.

This is generally known as the multiple constant

multiplications (MCM) operation and is also a central

operation and performance bottleneck in many other

DSP systems such as fast Fourier transforms, discrete

cosine transforms (DCTs), and error-correcting

codes.

Although area-, delay-, and power-efficient

multiplier architectures, such as Wallace [3] and

modified Booth multipliers, have been proposed, the

full flexibility of a multiplier is not necessary for the

constant multiplications, since filter coefficients are

fixed and determined beforehand by the DSP

algorithms. Hence, the multiplication of filter

coefficients with the input data is generally

implemented under a shift-adds architecture, where

Fig. 1.FIR filter implementations. (a) Direct form.

(b) Transposed form with generic multipliers. (c)

Transposed form with an MCM block.

each constant multiplication is realized using

addition/subtraction and shift operations in an MCM

operation [Fig. 1(c)].

For the shift-adds implementation of

constant multiplications, a straightforward method,

generally known as digit-based recoding, initially

RESEARCH ARTICLE OPEN ACCESS

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 81 | P a g e

defines the constants in binary. Then, for each ―1‖ in

the binary representation of the constant, according to

its bit position, it shifts the variable and adds up the

shifted variables to obtain the result.

Fig. 2. Shift-adds implementations of 29x and 43x.

(a) Without partial product sharing and with partial

product sharing. (b) Exact CSE algorithm [6]. (c)

Exact GB algorithm [9].

As a simple example, consider the constant

multiplications 29x and 43x. Their decompositions in

binary are listed as follows:

29x = (11101)bin x = x << 4 + x << 3 + x << 2 + x

43x = (101011)bin x = x << 5 + x << 3 + x << 1 + x

Which requires six addition operations as

illustrated in Fig. 2(a).

However, the digit-based recoding

technique does not exploit the sharing of common

partial products, which allows great reductions in the

number of operations and, consequently, in area and

power dissipation of the MCM design at the gate

level. Hence, the fundamental optimization problem,

called the MCM problem, is defined as finding the

minimum number of addition and subtraction

operations that implement the constant

multiplications. Note that, in bit-parallel design of

constant multiplications, shifts can be realized

using only wires in hardware without representing

any area cost.

The algorithms designed for the MCM

problem can be categorized in two classes:

common subexpression elimination (CSE)

algorithms [4]–[6] and graph-based (GB) techniques

[7]–[9]. The CSE algorithms initially extract all

possible subexpressions from the representations of

the constants when they are defined under binary,

canonical signed digit (CSD) [4], or minimal signed

digit (MSD) [5]. Then, they find the ―best‖

subexpression, generally the most common, to be

shared among the constant multiplications. The GB

methods are not limited to any particular number

representation and consider a larger number of

alternative implementations of a constant, yielding

better solutions than the CSE algorithms, as shown in

[8] and [9].

Returning to our example in Fig. 2, the exact

CSE algorithm of [6] gives a solution with four

operations by finding the most common partial

products 3x = (11)
bin x and 5x = (101)

bin x when

constants are defined under binary, as illustrated

in Fig. 2(b). On the other hand, the exact GB

algorithm [9] finds a solution with the minimum

number of operations by sharing the common partial

product 7x in both multiplications, as shown in Fig.

2(c). Note that the partial product 7x = (111)
bin x

cannot be extracted from the binary representation

of 43x in the exact CSE algorithm [6].

However, all these algorithms assume that

the input data x is processed in parallel. On the

other hand, in digit-serial arithmetic, the data words

are divided into digit sets, consisting of d bits that

are processed one at a time. Since digit- serial

operators occupy less area and are independent of

the data word length, digit-serial architectures offer

alternative low-complexity designs when compared

to bit-parallel architectures. However, the shifts

require the use of D flip-flops, as opposed to the

bit-parallel MCM design where they are free in

terms of hardware. Hence, the high-level algorithms

should take into account the sharing of shift

operations as well as the sharing of

addition/subtraction operations in digit-serial MCM

design. Furthermore, finding the minimum number

of operations realizing an MCM operation does not

always yield an MCM design with optimal area at

the gate level [10]. Hence, the high-level algorithms

should consider the implementation cost of each

digit-serial operation at the gate level.

In this paper, we initially determine the

gate-level implementation costs of digit-serial

addition, subtraction and left shift operations used in

the shift-adds design of digit-serial MCM

operations. Then, we introduce the exact CSE

algorithm [11] that formalizes the gate-level area

optimization problem as a 0–1 integer linear

programming (ILP) problem when constants are

defined under a particular number representation.

We also present a new optimization model that

reduces the 0–1 ILP problem size significantly and,

consequently, the runtime of a generic 0–1 ILP

solver. Since there are still instances which the exact

CSE algorithm cannot handle, we describe the

approximate GB algorithm [12] that iteratively finds

the ―best‖ partial product which leads to the optimal

area in digit-serial MCM design at the gate level.

This paper also introduces a computer-aided

design (CAD) tool which generates the hardware

descriptions of digit-serial MCM operations and FIR

filters based on design architecture and implements

these circuits using a commercial logic synthesis

tool. The digit-serial constant multiplications can be

implemented under the shift- adds architecture, and

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 82 | P a g e

also can be designed using generic digit- serial

constant multipliers.

Results on a comprehensive set of

instances show that the solutions of algorithms

introduced in this paper lead to significant

improvements in area of digit-serial MCM designs

compared to those obtained using the algorithms

designed for the MCM problem. The digit-serial FIR

filter designs obtained by CAD tool also indicate that

the realization of the multiplier block of a digit-serial

FIR filter under the shift- adds architecture

significantly reduces the area of digit-serial FIR

filters with respect to those designed using digit-

serial constant multipliers. Additionally, it is

observed that the optimal tradeoff between area and

delay in digit-serial FIR filter designs can be

explored by changing the digit size d.

II. BACKGROUND
This section presents the main concepts

related to the proposed algorithms, introduces the

problem definitions, and gives an overview on

previously proposed algorithms.

A. Number Representation

The binary representation decomposes a

number in a set of additions of powers of 2. The

representation of numbers using a signed digit system

makes use of positive and negative digits, {1, 0, −1}.

The CSD representation is a signed digit system

that has a unique representation for each number and

verifies the following main properties:

1) two nonzero digits are not adjacent

2) the number of nonzero digits is minimum.

Any n digit number in CSD has at most [(n

+1)/2] nonzero digits and, on average, the number

of nonzero digits is reduced by 33% when compared

to binary. The MSD representation [5] is obtained

by dropping the first property of the CSD

representation. Thus, a constant may have several

representations under MSD, including its CSD

representation, but all with a minimum number of

nonzero digits.

Consider the constant 23 defined in six bits.

Its binary representation 010111 includes four

nonzero digits. It is represented as 100110 in CSD,

and both 100110 and 101100 denote 23 in MSD

using three nonzero digits (where 1 stands for −1).

B. Boolean Satisfiability

A Boolean function ϕ: {0, 1}n → {0, 1} can

be denoted by a propositional formula. The

conjunctive normal form (CNF) is a representation

of a propositional formula consisting of a

conjunction of propositional clauses where each

clause is a disjunction of literals and a literal l j

is either a variable x j or its complement x j . Note

that, if a literal of a clause assumes value 1, then

the clause is satisfied. If all literals of a clause

assume the value 0, then the clause is unsatisfied.

The satisfiability (SAT) problem is to find an

assignment on n variables of the Boolean formula in

CNF that evaluates the formula to 1, or to prove that

the formula is equal to the constant 0.

Fig. 3. Combinational circuit and its corresponding

CNF formula.

A combinational circuit is a directed

acyclic graph with nodes corresponding to logic

gates and directed edges corresponding to wires

connecting the gates. Incoming edges of a node are

called fanins and outgoing edges are called fanouts.

The primary inputs of the network are the nodes

without fanins. The primary outputs are the nodes

without fanouts.

The CNF formula of a combinational circuit

is the conjunction of the CNF formulas of each gate,

where the CNF formula of each gate denotes the

valid input–output assignments to the gate. The

derivation of CNF formulas of basic logic gates

can be found in [13]. As a simple example, consider

the combinational circuit and its CNF formula given

in Fig. 3. In this Boolean formula, the first three

clauses represent the CNF formula of a two-input

AND gate, and the last three clauses denote the

CNF formula of a two-input OR gate. Observe from

Fig. 3 that the assignment x1 = x3 = x4 = x5

= 0 and x2 =1 makes the formula ϕ equal to 1,

indicating a valid assignment. However, the

assignment x1 = x3 = x4 = 0 and x2 = x5 = 1

makes the last clause of the formula equal to 0 and,

consequently, the formula ϕ, indicating a conflict

between the values of the inputs and output of the

OR gate.

C. 0-1 ILP

The 0–1 ILP problem is the minimization or

the maximization of a linear cost function subject to a

set of linear constraints and is generally defined as

follows:

Minimize w
T
 ・ x (1)

s.t. A ・ x ≥ b, x ∈ {0, 1}
n
. (2)

In (1), wj in w is an integer value associated

with each of n variables x j, 1 ≤ j ≤ n, in the cost

function, and in (2), A・ x ≥ b denotes the set of m

linear constraints, where

 b ∈ Z
m
 and A ∈ Z

m
 × Z

n
.

A clause l1 + ・ ・ ・ + lk, where k ≤ n, to

be satisfied in a CNF formula can be interpreted as a

linear inequality l1+・ ・ ・+lk ≥ 1, where x j is

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 83 | P a g e

represented by 1−x j, as shown in [14]. These linear

inequalities are commonly referred to as CNF

constraints, where ai j ∈ {−1, 0, 1} and bi is equal to 1

minus the total number of complemented variables in

its CNF formula. For instance, the set of clauses,

(x1 + x2), (x2 + x3), and (x1 + x3), has the equivalent

linear inequalities given as x1 + x2 ≥ 1, −x2 + x3 ≥ 0,

and −x1 − x3 ≥ −1, respectively.

Fig. 4. Digit-serial operations when d is equal to 2.

(a) Addition operation. (b) Subtraction operation.

(c) Left shift by one time. (d) Left shift by two times.

D. Digit – Serial Arithmetic

In digit-serial arithmetic, data words are

divided into digits, with a digit size of d bits, which

are processed in one clock cycle. The special cases of

the digit-serial computation, called bit-serial and bit-

parallel processing, occur when the digit size d is

equal to 1 and input data wordlength, respectively.

The digit-serial computation plays an important role

when the bit-serial implementations cannot meet

delay requirements and the bit-parallel designs

require excessive hardware. Thus, an optimal tradeoff

between area and delay can be obtained by changing

the digit size parameter (d).

The digit-serial addition, subtraction, and

left shift operations are depicted in Figure 4 when d

is equal to 2. Notice from Figure 4(a) that in a digit-

serial addition operation, in general, the number of

required full adders (FAs) is equal to d and the

number of necessary D flip-flops is always 1. The

subtraction operation (Figure 4(b)) is implemented

using 2’s complement, requiring the initialization of

the D flip-flop with 1 and additional d inverter gates

with respect to the digit-serial addition operation. In a

left shift operation (Figure 4(c)-(d)), the number of

required D flip-flops is equal to the amount of shift.

The input-output correspondence and the number of

flip-flops cascaded serially for each input in a digit-

serial left shift operation are given in Eqn. (3) and (4)

respectively, where i ranges from 0 to d−1 and ls

denotes the amount of left shift.

ai => c(i + ls) mod d (3)

































.,

)mod(,

Otherwise
d

ls

dlsdiif
d

ls

FFai

 (4)

As an example on digit-serial realization of

constant multiplications under the shift-adds

architecture, Figure 5 illustrates the digit-serial

implementation of 29x and 43x obtained by the exact

GB algorithm given in Figure 2(c) when d is 1. The

network includes 2 digit serial additions, 1 digit-

serial subtraction, and 5 D flip-flops for all the left

shift operations. Observe from Figure 5 that at each

clock cycle, one bit of the input data x is applied to

Fig. 5.Digit-serial design of shift-adds

implementation of 29x and 43x given in Fig. 2(c)

when d is 1.

the network input and one bit of the constant

multiplication output is computed. Note that the

digit-serial design of the MCM operation occupies

significantly less area when compared to its bit-

parallel design and the area of the design is not

dependent on the bit-width of the input data.

However, the latency of the MCM computation is

increased due to the serial processing. Suppose that x

is a 16-bit input value. To obtain the actual output of

29x and 43x in the digit-serial network of Figure 5,

21 and 22 clock cycles are required respectively1.

Thus, necessary bits must be appended to the input

data x, i.e., 0s, if x is an unsigned input or sign bits,

otherwise. Moreover, in the case of the conversion of

the outputs obtained in digit-serial to the bitparallel

format, storage elements and control logic are

required.

LMCM =







 

d

Nbw)((5)

Where N is the bit width of the input

variable x, bw is the maximum bit width of the

constants to be implemented, and d is less than N.

Thus, (5) does not apply to bit-parallel processing

(when d = N). Note that in a bit-parallel design, the

latency of the MCM computation is only one clock

cycle. Returning to our example given in Fig. 5,

suppose that x is a 16-bit input value. Thus, to obtain

the actual output of 29x and 43x in the digit-serial

network of Fig. 5, we need a total of 11 clock cycles.

As a sign extension, d × LMCM − N bits must be

padded to the input data x, which are zeros if x is an

unsigned input, or sign bits otherwise.

III. EXACT CSE ALGORITHM
The exact CSE algorithm consists of four

main steps. First, all possible implementations of

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 84 | P a g e

constants are extracted from the nonzero digits of the

constants defined under a number representation:

binary, CSD, or MSD. Then, the implementations of

constants are represented in terms of a Boolean

network. Third, the gate-level area optimization

problem is formalized as a 0–1 ILP problem with a

cost function to be minimized and a set of constraints

to be satisfied. Finally, a set of operations that yields

the minimum area solution is obtained using a

generic 0–1 ILP solver. These four steps are

described in detail next.

Fig.6. Possible implementations of 25 under MSD

representation.

A. Finding the Partial Terms

In the preprocessing phase, the constants to

be multiplied by a variable are converted to positive,

and then made odd by successive divisions by 2. The

resulting constants are stored without repetition in the

target set T. Thus, T includes the minimum number of

necessary constants to be implemented. The part of

the algorithm where the implementations of the target

constants and partial terms are found is as follows.

1) Take an element from T, ti , find its

representation(s) under the given number

representation, and store it(them) in a set called

S. Form an empty set Oi , associated with ti , that

will include the inputs and the amount of left

shifts at the inputs of all addition/subtraction

operations which generate ti .

2) For each representation of ti in the set S.

a) Compute all non symmetric partial term

pairs that cover the representation of ti.

b) In each pair, make each partial term positive

and odd, and determine its amount of left

shift.

c) Add each pair to the set Oi with the amount

of left shifts of partial terms.

d) Add each partial term to T, if it does not

represent the input that the constants are

multiplied with, i.e., denoted by 1, and is not

in T.

3) Repeat Step 1 until all elements of T are

considered.

Observe that the target set T only includes

the target constants to be implemented in the

beginning of the iterative loop, and in later iterations

it is augmented with the partial terms that are

required for the implementation of target constants.

All possible implementations of an element in the

target set ti are found by decomposing the nonzero

digits in the representation of, ti, into two partial

terms. As an example, consider 25 as a target

constant defined under MSD, which has two

representations 011001 and 101001. All possible

implementations of 25 are given in Fig. 6.

Observe from Fig. 6 that the last

implementations of 25 on both representations, i.e., 1

+ 3 << 3, are identical, therefore one of them can be

eliminated. Also, the duplications of

implementations, such as 1 << 4 + 9 = 9 + 1 << 4, are

not listed in Fig. 6. After the partial terms required

for the implementation of 25 under MSD, i.e., 3, 7, 9,

17, and 33, are found, they are added to the target set

T without repetition and their implementations are

determined in a similar way.

B. Construction of the Boolean Network

After all possible implementations of target

constants and partial terms are found, they are

represented in a network that includes only AND and

OR gates. Its properties are given as follows.

1) The primary input of the network is the input

variable to be multiplied with the constants.

2) An AND gate in the network represents an

addition/ subtraction operation and has two

inputs.

3) An OR gate in the network represents a target

constant or a partial term and combines all its

possible implementations.

4) The outputs of the network are the OR gate

outputs associated with the target constants.

The Boolean network is constructed as

follows.

 1) Take an element from T, ti.

 2) For each pair in Oi, generate a two-input

AND gate. The inputs of the AND gate are

the elements of the pair, i.e., 1, denoting the

input that the constants are Multiplied with,

or the outputs of OR gates representing

target constants or partial terms in the

network.

3) Generate an OR gate associated with ti,

where its inputs are the outputs of the AND

gates determined in Step 2.

4) If ti is a target constant, make the output of the

corresponding OR gate an output of the network.

5) Repeat Step 1 until all elements in T are

considered.

The network generated for the target

constant 25 defined under MSD is given in Fig. 7,

where one-input OR gates for the partial terms 7, 9,

17, and 33 are omitted and the type of each operation

is shown inside of each AND gate.

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 85 | P a g e

Fig.7. Network constructed for the target constant 25

under MSD.

C. Formalization of the 0-1 ILP Problem

We need to include optimization variables

into the network, so that we can easily formalize the

gate-level area optimization problem as a 0–1 ILP

problem. The optimization variables are associated

with two parameters that have different

implementation costs at the gate level, i.e.,

addition/subtraction operations and left shifts of

constants (partial terms and target constants).

For each AND gate that represents an

addition/subtraction operation in the network, we

introduce an optimization variable associated with

the operation, i.e., opt a ± b, where a and b denote the

inputs of an operation, and we add this variable to the

input of the AND gate. The cost value of this type of

optimization variable in the cost function to be

minimized is determined as the gate-level

implementation cost of the digit-serial operation

computed considering its type (addition or

subtraction) and the digit size (d), as described in [1].

In order to maximize the sharing of left shifts, i.e.,

the D flip-flops at the gate level, for each constant c

in the network, we initially find the maximum

amount of left shift mlsc that the constant c has. Then,

for each constant c with mlsc greater than zero, we

introduce mlsc optimization variables representing

left shifts of c from 1 to mlsc, i.e., optc<<1, optc<<2, . . .

, optc<<mlsc .In the cost function to be minimized, the

cost value of this type of optimization variable is

determined as the gate-level cost of one D flip-flop,

as described in Section II-D. The inclusion of these

optimization variables into the network can be done

in two ways.

Model 1: For each AND gate in the network

representing an addition/subtraction operation, if an

input signal ins is shifted by ls > 0 times, then we

include ls additional inputs standing for the

optimization variables associated with the ls left shift

of the input signal ins, i.e., optins<<1, optins<<2, . . . ,

optins<<ls .

Model 2: Initially, for each constant c with mlsc

greater than zero, we generate a chain of mlsc − 1

AND gates with two inputs, where the inputs of the

first AND gate of the chain are optc<<1 and optc<<2,

and the inputs of the i
 th

 AND gate are optc<<i+1 and

the output of the (i − 1)
th

 (previous) AND gate in the

chain, where 2 ≤ i ≤ mlsc − 1. Then, for each AND

gate representing an addition/subtraction operation, if

an input signal ins is shifted by ls > 0 times, we add a

single input to the AND gate. This input is optins_1,

if ls is equal to 1, or otherwise, the output of the (ls −

1)
th

 AND gate in the chain of AND gates including

the optimization variables for the mlsins left shift of

the input signal ins.

Fig. 8. (a) Networks constructed for the target

constant 25 under MSD after the optimization

variables are added Under Model 1.

Some simplifications in the network can be

also achieved. The input variable x denoted by 1 can

be eliminated from the inputs of the AND gates,

because its logic value is always 1 (i.e., it is always

available). Fig. 8(a) and (b) illustrate the networks

generated for the target constant 25 under MSD after

the simplifications are done and the optimization

variables are added under Models 1 and 2,

respectively.

 After the optimization variables are added

into the network, the 0–1 ILP problem is generated.

The cost function of the 0–1 ILP problem is

constructed as the linear function of optimization

variables, where the cost value of each optimization

variable is determined as described previously. The

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 86 | P a g e

constraints of the 0–1 ILP problem are obtained by

finding the CNF formulas of each gate in the network

and expressing each clause of the CNF formulas as a

linear inequality, as described in Section II-C. The

outputs of the network, i.e., the outputs of OR gates

associated with the target constants, are set to 1, since

the implementation of target constants is aimed.

Observe from Fig. 8(a) and (b) that Model 1

generates a 0-1 ILP problem including slightly less

number of variables than Model 2 due to the chain of

AND gates used in Model 2. However, the 0–1 ILP

problem constructed under Model 2 has significantly

less number of constraints than that of Model 1 since

the number of inputs of an AND gate representing an

addition /subtraction operation is increased only by 1

during the inclusion of the optimization variables

denoting the left shift of a constant in Model 2. Note

that the number of optimization variables under both

models is the same.

Fig. 8. (b) Networks constructed for the target

constant 25 under MSD after the optimization

variables are added Under Model 2.

E. Finding the Minimum Area Solution

A generic 0–1 ILP solver will search for the

minimum value of the cost function on the generated

0–1 ILP problem by satisfying the constraints that

represent how target constants and partial terms are

implemented. The set of operations that yields the

minimum area solution consists of the

addition/subtraction operations whose optimization

variables are set to 1 in the solution obtained by the

0–1 ILP solver.

IV. APPROXIMATE GB ALGORITHM
The solution of an exact CSE algorithm

described in Section III is not the global minimum

since all possible implementations of a constant are

found from its representation. Also, the optimization

of gate-level area problem in digit-serial MCM

design is an NP-complete problem due to the NP-

completeness of the MCM problem. Thus, naturally,

there will be always 0–1 ILP problems generated by

the exact CSE algorithm that current 0–1 ILP solvers

find difficult to handle. Hence, the GB heuristic

algorithms, which obtain a good solution using less

computational resources, are indispensable.

In our approximate algorithm called

MINAS-DS[1], as done in algorithms designed for

the MCM problem given in Definition 1[1], we find

the fewest number of intermediate constants such that

all the target and intermediate constants are

synthesized using a single operation. However, while

selecting an intermediate constant for the

implementation of the not yet synthesized target

constants in each iteration, we favor the one among

the possible intermediate constants that can be

synthesized using the least hardware and will enable

us to implement the not-yet synthesized target

constants in a smaller area with the available

constants. After the set of target and intermediate

constants that realizes the MCM operation is found,

each constant is synthesized using an A-operation

that yields the minimum area in the digit-serial MCM

design. In MINAS-DS, the area of the digit-serial

MCM operation is determined as the total gate-level

implementation cost of each digit-serial addition,

subtraction, and shift operation under the digit size

parameter d as described in Section II-D.

V. FIR FILTER DESIGN

This section is divided in two parts: the first

part presents the results of high-level algorithms on

digit-serial MCM blocks design and second part

presents the digit-serial FIR filter design.

A. Digit-Serial MCM Design

The digit-serial realization of multiple

constant multiplications under the shift-adds

architecture is illustrated in Fig. 4 digit-serial

implementation of 29x and 43x obtained by the exact

GB algorithm given in Fig. 2(c) with digit size equal

to 1. As can be easily observed, the network includes

2 digit-serial addition, 1 digit-serial subtractions, and

5 D flip-flops for all the left shift operations. In this

network, at each clock cycle, two bits of input data x

is applied to the network and two bits of the constant

multiplications output is computed at the output of

digit-serial addition/ subtraction operation. While

sharing of addition/ subtraction operation reduces the

complexity of the digit-serial MCM design (since

each addition and subtraction operation requires a

digit-serial operation), the sharing of shift operations

for a constant multiplication also reduces the number

of D flip-flops and, consequently, the area of the

digit-serial MCM design[12][15].

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 87 | P a g e

B. Digit-Serial FIR Filter Design

The realization of Digit-serial FIR filter

using Multiple Constant Multiplication is illustrated

in Fig. 1(c) the multiplier block is replaced by

Multiple Constant Multiplication (MCM) block.

Initially multiplier block is implemented

based on CSE and GB algorithms using digit-serial

addition, subtraction, and shift operations and then

digit-serial FIR filter is implemented by using

multiplier block. Hence these architectures requires

less area, power and delay Compared to bit-parallel

FIR filter. In practical, there should be a tradeoff

between area and delay, it is mainly depends on digit

size d. The digit-serial MCM blocks has been

implemented with the constant coefficients 29, 43

with the digit size 1 by using the graph based

technique through this the digit-serial FIR filter has

been developed like as shown in Fig. 1(c). It can

require a delay elements and adders with an MCM

block.

VI. RESULTS AND DISCUSSIONS
This section presents the results of high-

level algorithms on MCM blocks of FIR filters.

Fig.9 shows the simulation results of an

network constructed for the target constant 25 under

MSD by using CSE algorithm.

Fig.10 and Fig.11 Shows Simulation results

of Networks constructed for the target constant 25

under MSD after the optimization variables are

added Under Model 1 and Model 2. The Table 1can

shows the comparisons between of Networks

constructed for the target constant 25 under MSD

after the optimization variables are added Under

Model 1 and Model 2. These comparisons can yields

the area required to construct an digit-serial MCM.

Depending on the parameter in the Table 1 the area

required to construct an digit-serial MCM operation

in Model 2 is less than that of the Model 1. Fig. 12

shows the comparison graph between the Model 1

and Model 2.

Fig.13 shows the simulation results of Digit-

serial design of shift-adds implementation of 29x and

43x under Graph Based algorithm and Fig.14 shows

the simulation results of an FIR filter with and digit-

serial MCM blocks.

Fig. 9 Simulation results of network constructed for

the target constant 25 under MSD.

Fig. 10. Simulation results of Networks constructed

for the target constant 25 under MSD after the

optimization variables are added Under Model 1.

Fig. 11.Simulation results of Networks constructed

for the target constant 25 under MSD after the

optimization variables are added Under Model 2.

TABLE 1

Comparison of Model1 and Model 2

Components/ Model Model 1 Model 2

Adders 7 7

Subtractors 4 4

Comparators 25 6

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 88 | P a g e

Slices 203 93

Number of 4 input LUTs 356 164

Fig. 12. Graph for comparison between the Model 1

and Model 2

Fig. 13. Simulation results of Digit-serial design of

shift-adds implementation of 29x and 43x

Fig.14. Simulation results of Digit-serial FIR filter

VII. CONCLUSION
In this paper, we introduced the 0–1 ILP

formalization for designing digit-serial MCM

operation with optimal area at the gate level by

considering the implementation costs of digit-serial

addition, subtraction, and shift operations. Although

the search space of the exact algorithm is restricted

by the number representation, the given 0-1 ILP

formalization can be applied in algorithms that are

not limited to any particular number representation.

Since there are still instances with which the

exact CSE algorithm cannot cope, we also

proposed an approximate GB algorithm that finds

the best partial products in each iteration which

yield the optimal gate-level area in digit-serial MCM

design. This paper also introduced the design

architectures for the digit-serial MCM operation

and a CAD tool for the realization of digit-serial

MCM operations and FIR filters.

The results indicate that the complexity of

digit-serial MCM designs can be further reduced

using the high-level optimization algorithms

proposed in this paper. It was shown that the

realization of digit-serial FIR filters under the shift-

adds architecture yields significant area reduction

when compared to the filter designs whose

multiplier blocks are implemented using digit-serial

constant multipliers. It is observed that a designer

can find the circuit that fits best in an application

by changing the digit size.

REFERENCES
[1] L. Aksoy, C. Lazzari, E. Costa, P. Flores, J.

Monterio,‖ Design of Digit-Serial FIR

Filter: Algorithms, Architectures and a CAD

Tool, ―IEEE Trans. VLSI Systems, vol. 21,

pp. 498-511, March 2013.

[2] L. Wanhammar, DSP Integrated Circuits.

New York: Academic, 1999.

[3] C.Wallace, ―A suggestion for a fast

multiplier,‖ IEEE Trans. Electron. Compute,

vol. 13, no. 1, pp. 14-17, Feb. 1964.

[4] R. Hartley, ―Subexpression sharing in filters

using canonic signed digit multipliers,‖

IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 43, no. 10, pp. 677–688, Oct. 1996.

[5] I.-C. Park and H.-J. Kang, ― Digital filter

synthesis based on minimal signed digit

representation,‖ in Proc. DAC, 2001, pp.

468-473.

[6] L. Aksoy, E. Costa, P. Flores, and J.

Monteiro, ―Exact and approximate

algorithms for the optimization of area and

delay in multiple constant multiplications,‖

IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 27, no. 6, pp. 1013–1026,

Jun. 2008.

[7] Dempster and M. Macleod, ―Use of

minimum-adder multiplier blocks in FIR

digital filters,‖ IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 42, no. 9, pp. 569–577,

Sep. 1995.

[8] Y. Voronenko and M. Püschel,

―Multiplierless multiple constant multi-

plication,‖ ACM Trans. Algor., vol. 3, no. 2,

pp. 1–39, May 2007.

[9] L. Aksoy, E. Gunes, and P. Flores, ―Search

algorithms for the multiple constant

multiplications problem: Exact and

approximate,‖ J. Micro- process. Microsyst.,

vol. 34, no. 5, pp. 151–162, Aug. 2010.

[10] L. Aksoy, E. Costa, P. Flores and J.

Monteiro, ―Optimization of area in digit FIR

filters using gate-level metrics,‖ in Proc.

Dac, 2007, pp.420-423.

[11] L. Aksoy, C. Lazzari, E. Costa, P. Flores,

and J. Monteiro, ―Optimization of area in

digit-serial multiple constant multiplications

at gate-level,‖ in Proc. ISCAS, 2011, pp.

2737–2740.

Bayikati Yagneswar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.80-89

 www.ijera.com 89 | P a g e

[12] L. Aksoy, C. Lazzari, E. Costa, P. Flores,

and J. Monteiro, ―Efficient shift-adds design

of digit-serial multiple constant

multiplications,‖ in Proc. Great Lakes Symp.

VLSI, 2011, pp. 61–66.

[13] T. Larrabee, ―Test Pattern generation using

Boolean satisfiability,‖ IEEE Trans.

Comput.-Aided Design Integer.Circuits

Syst., vol. 11 no. 1,pp.4-15, Jan. 1992.

[14] P. Barth, ―A Davis-Putnam based

enumeration algorithm for linear pseudo-

Boolean optimization,‖ Max-Planck-Institut

für Informatik, Saar- brücken, Germany,

Tech. Rep. MPI-I-95-2-003, 1995.
[15] R. Hartley, P. Corbett, Digit-serial

processing techniques, IEEE Transactions
on Circuits and Systems II 37 (6) (1990)
707–719.

AUTHORS PROFILE

BAYIKATI YAGNESWAR Completed his B.Tech

in Electronics & Communication Engineering from

AVR & SVR College of Engineering and

Technology, Nandyal. His areas of interests are

Microelectronics and Digital System Design.

Presently, he is pursuing M.Tech at Sree

Vidyanikethan Engineering College, Tirupati,

Andhra Pradesh.

G. NARESH Working as Assistant Professor in Sree

Vidyanikethan Engineering College, Tirupati. He

completed M.Tech from Sathyabhama University,

Chennai and Completed B.Tech from SVCET,

Chittoor. His interested areas are Low Power VLSI

and FPGA.

